Grounding quantum probability in psychological mechanism.

نویسنده

  • Bradley C Love
چکیده

Pothos & Busemeyer (P&B) provide a compelling case that quantum probability (QP) theory is a better match to human judgment than is classical probability (CP) theory. However, any theory (QP, CP, or other) phrased solely at the computational level runs the risk of being underconstrained. One suggestion is to ground QP accounts in mechanism, to leverage a wide range of process-level data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Mechanics and the Mechanism of Sexual Reproduction

There are many claims that quantum mechanics plays a key role in the origin and/or operation of biological organisms. The mechanism of the meiosis, mitosis and gametes life cycle from the view-point of quantum for human has been represented. The quantum gates have been used to simulate these processes for the first time. The reason of several hundred sperms has been explained in the male too

متن کامل

Quantum Mechanics and the Mechanism of Sexual Reproduction

There are many claims that quantum mechanics plays a key role in the origin and/or operation of biological organisms. The mechanism of the meiosis, mitosis and gametes life cycle from the view-point of quantum for human has been represented. The quantum gates have been used to simulate these processes for the first time. The reason of several hundred sperms has been explained in the male too

متن کامل

Grounding Bohmian Mechanics in Weak Values and Bayesianism

Bohmian mechanics (BM) is a popular interpretation of quantum mechanics in which particles have real positions. The velocity of a point x in configuration space is defined as the standard probability current j(x) divided by the probability density P (x). However, this “standard” j is in fact only one of infinitely many that transform correctly and satisfy Ṗ + ∇ · j = 0. In this article I show t...

متن کامل

A Physical Basis for the Second Law of Thermodynamics: Quantum Nonunitarity

It is argued that if the non-unitary measurement transition, as codified by Von Neumann, is a real physical process, then the ‘probability assumption’ needed to derive the Second Law of Thermodynamics naturally enters at that point. The existence of a real, indeterministic physical process underlying the measurement transition would therefore provide an ontological basis for Boltzmann’s Stossza...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Behavioral and brain sciences

دوره 36 3  شماره 

صفحات  -

تاریخ انتشار 2013